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A linear stability analysis of vapour–liquid counterflow in porous media is carried out.
For the vapour-dominated basic state the development in time of both pressure and
saturation disturbances is studied. The pressure field is shown to be asymptotically
stable for all choices of thermal boundary conditions, excluding the insulating–
insulating boundary condition for which it is neutrally stable. The saturation field is
proven to be Lyapunov stable: the saturation disturbance remains bounded by an
infinitesimal number at all times. For both vapour- and liquid-dominated basic states
the direction of propagation of small saturation disturbances is determined. These
results explain the formation of two-layer geothermal structures and why alternative
structures cannot develop within homogeneous reservoirs.

1. Introduction
Vapour–liquid counterflow occurs naturally in geothermal reservoirs: vapour flows

upward and the condensate moves downward with the net mass flux remaining very
small (White, Muffler & Truesdell 1971). Vapour–liquid counterflow can be either
vapour- or liquid-dominated. In the vapour-dominated counterflow vapour is the
most mobile phase, and in the liquid-dominated counterflow liquid is the most mobile
phase.

The existence of vapour–liquid counterflow is supported by field measurements.
Nearly isothermal temperature distributions and small pressure gradients, which ex-
ceed the vapour-static pressure gradient only slightly, have been recorded in the
upper parts of the Geysers geothermal field in California (Thomas et al. 1981),
Larderello in Italy (Pruess et al. 1987), and Wairakei in New Zealand (Allis &
Hunt 1986). Such regions are modelled as vapour-dominated counterflowing zones.
Larger temperature and pressure gradients, typical of liquid-dominated counterflow,
are found in the lower parts of Larderello (Pruess et al. 1987). The flow in the
lower parts of the Geysers and Wairakei reservoirs is also characterized by larger
temperature gradients (Drenick 1986; Walters et al. 1988; Allis & Hunt 1986). These
temperature gradients, however, cannot be accommodated into a vapour–liquid coun-
terflow model. In all three reservoirs an increase in temperature gradients is abrupt,
which clearly indicates the presence of two superposed layers saturated by water
and steam in different proportions. Most intriguing, there is no drilling evidence of
low permeability barriers or permeability contrasts between the upper and lower
layers.

These observation results have been reflected in the following conceptual models.
Model A: a vapour-dominated zone over a water region (White et al. 1971).
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Model B: a vapour-dominated zone over a steam region (Truesdell 1991).
Model C: a vapour-dominated zone over a liquid-dominated zone (Pruess et al.

1987).
Models A and B are appropriate for some parts of the Wairakei and Geysers

geothermal fields respectively, and model C accommodates the Larderello observa-
tions.

In addition we shall consider here another two-layer model.
Model D: a water layer over a liquid-dominated region.
This structure was first obtained in laboratory experiments by Bau & Torrance

(1982) and later derived from theoretical considerations by Pestov (1997). To date
there is no clear field evidence that such a structure could develop in nature, although
the Kawah Kamojang geothermal field in Indonesia resembles some of its features.

Structured geothermal systems have been of significant interest in geothermal mod-
elling. This interest dates back to the linear stability work of Schubert & Straus (1980),
who studied the gravitational stability of superposed layers of water and steam in
porous media. Their approach was extended by including the effects of vapour–liquid
counterflow in the analytical and numerical works of Ramesh & Torrance (1990, 1993).
In these papers, however, an underlying counterflowing region was assumed to be
isothermal, and only pressure disturbances were considered. (Two-phase counterflow
is not isothermal, and the development in time of saturation disturbances is equally
important, as we shall show further.) Weir & Young (1991) and Kissling et al. (1992)
investigated the propagation of saturation discontinuities in porous media saturated
by water and steam. Their numerical experiments led to a better understanding of
flows in two-phase regions. The evolution of structured reservoirs has been modelled
in computer experiments. Shook (1993) was the first to obtain on a computer the
controversial Geysers model (structure B). Lai, Bodvarsson & Truesdell (1994) simu-
lated structures similar to A, B and C. There have been numerous studies on steady
heat and mass transfer in geothermal systems. McGuinness (1996) examined two-
phase steady-state solutions in a temperature-saturation plane with capillary effects
included, and determined which solution (vapour- or liquid-dominated) is likely to
occur in actuality. Young (1996) investigated phase transitions in vertical hydrother-
mal flow using entropy and thermodynamic inequalities at the phase boundary. These
results, although restricted to steady one-dimensional flows, are fully supported by
the present linear stability analysis.

In this paper the formation of different two-layer structures within homogeneous
reservoirs is explained using the quasi-static approximation for geothermal processes.
In Appendix A we illustrate how a real geothermal process can be approximated
by a quasi-static path. Since a quasi-static process is a series of transitions between
neighbouring equilibrium states (steady-states), it is important to know that all these
states are stable. In the next section we consider the stability of vapour-dominated
counterflow. This case is particularly important in geothermal modelling since the
observed structures A, B and C contain a vapour-dominated counterflowing region.
The liquid-dominated case is too complicated for analytical studies and must be
treated numerically. It is, however, possible to find the direction of propagation
of small saturation disturbances for both vapour- and liquid-dominated cases. The
direction in which small saturation waves propagate is determined by the sign of the
saturation wave speed in the linearized saturation equation. In § 2.2 and Appendix
C we give explicit analytical expressions for the wave speed in vapour- and liquid-
dominated media respectively. Another important question we address in the next
section is related to the relaxation time to restore thermodynamic equilibrium. It
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Figure 1. Liquid relative permeability versus Q̃.

must be taken into account that the process of returning to equilibrium is not
instantaneous. This will help to explain why the alternative inverse structures IA (a
water region above), IB (a steam layer above), IC (a liquid-dominated zone over a
vapour-dominated region), and ID (a water layer below) cannot develop within a
homogeneous reservoir.

In our earlier work (Pestov 1995) we conjectured that the following geothermal
processes may lead to the formation of the two-layer structures:
• a decrease/increase in the heat flux Q at the reservoir lower boundary;
• a decrease/increase in reservoir vertical permeability k;
• the injection/withdrawal of fluid through reservoir boundaries.
The heat flux Q may decrease or increase in response to changes in igneous

activity. Permeability k may vary in response to deposition/dissolution of chemicals
and rock compression. In the non-dimensional governing equations these changes are
represented through the dimensionless heat flux Q̃ (Pestov 1997):

Q̃ =
µ∗l Q

m̃kρ∗l gρ
∗
l l
∗ . (1.1)

Here and in the following, the symbol ∼ marks values at the upper boundary (cooler
surface), the superscript ∗ denotes characteristic quantities, the subscripts v and l
indicate the vapour and liquid phase respectively, µl,v are dynamic viscosities, ρl,v
are densities, g is the acceleration due to gravity, l is latent heat, and m̃ is the ratio
between the vapour and liquid phase densities calculated at the upper boundary. The
dimensionless heat flux Q̃ is the key parameter which governs the phase distribution
inside a two-phase zone. The first two processes (changes in Q and k) affect the phase
distribution within a two-phase zone whereas the last processes (injection/withdrawal
of fluid) change its vertical extent.

With the quasi-static approximation the evolution of a geothermal system can be
modelled using the steady-state solutions. Figure 1 presents steady-state liquid relative
permeability krl calculated at the upper boundary as a function of Q̃. The temperature
at the upper boundary T̃ is taken to be 513 K, effective thermal conductivity α is
3.2 W m−1 K−1, and permeability k is 10−14 m2, values typical of the Geysers geother-
mal field. The upper and lower branches represent liquid- and vapour-dominated
solutions respectively. Q̃cr is the upper bound for the existence of vapour–liquid coun-
terflow in porous media (Pestov 1994). There are also two lower bounds according
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Figure 2. Sketch of a porous medium saturated by water and steam.

to McGuinness & Pestov (1996). The lower bounds cannot be seen in figure 1 since
they are very small for the range of parameters which apply to the Geysers geother-
mal field. The possible ways that lead to different two-layer structures are shown
by arrows. The initial states are taken to be fully two-phase (shown by asterisks at
the lower and upper branches). Curves denote the quasi-static changes in Q̃ when
the total amount of water inside a reservoir is held fixed (impermeable boundaries).
The vertical line represents a quasi-static injection/withdrawal process connecting the
initial states (Q̃ is held fixed). Structures A and C may develop from both liquid- and
vapour-dominated initial states when Q̃ is decreasing and the total amount of water
is held fixed. Which of two possibilities is realized is determined by the lower bound
for the existence of liquid-dominated counterflow in porous media (McGuinness &
Pestov 1996). When Q̃ is increasing and the total amount of water is held fixed,
either structure B or structure D may be formed depending on the initial state of a
reservoir. If the initial state is vapour-dominated, then structure B develops (see the
lower branch in figure 1). If the initial state is liquid-dominated, then structure D
develops (see the upper branch in figure 1).

In what follows, we analyse the sensitivity of vapour-dominated counterflow to small
disturbances. For our purposes, it is satisfactory to assume that either the equilibrium
between liquid and vapour phases is not affected by the processes considered, or that
the relaxation time to restore the equilibrium between phases is much less than the
time to return to the state of mechanical equilibrium.

2. Linear stability analysis
Consider a porous medium saturated by a two-phase water–steam mixture and

bounded by two parallel planes at ẑ = 0 and ẑ = 1 as sketched in figure 2. (Here
ẑ is the dimensionless vertical coordinate pointing in the direction of gravity.) We
assume that there is no external force acting in the horizontal direction, and that
hydrodynamic and thermal boundary conditions are uniform (e.g. either a constant
temperature or a constant heat flux is prescribed at the boundary). In addition we
assume that
• capillary pressure is unimportant;
• conduction is negligible;
• vapour enthalpy and latent heat variations can be neglected;
• liquid phase density can be taken as constant.
The validity of these assumptions for two-phase geothermal reservoirs has been

confirmed by numerous analytical and computer studies (see, for example, Cheng 1978;
O’Sullivan, Zyvoloski & Blakeley 1983; McGuinness et al. 1993; Pestov 1997).
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The first assumption is often used in analytical studies. While capillary pressure
is important for capillary-driven counterflow, it can be ignored in a geothermal
reservoir where the liquid-phase motion is caused by gravity (Schubert & Straus 1980;
Ramesh & Torrance 1990). In the non-dimensional governing equations the capillary
pressure effects are represented by the dimensionless ratio σr/µ∗V ∗L∗ (Barenblatt,
Entov & Ryzhik 1990). Here σ is interfacial tension for water and steam, r is mean
radius of curvature of the interface at the pore level, V ∗ is characteristic velocity,
µ∗ is characteristic dynamic viscosity, and L∗ is characteristic length. For a typical
geothermal reservoir this ratio is much less than 1 (Pestov 1997). This assumption,
however, does not hold in the interfacial layers where rapid changes in saturation
occur (McGuinness 1996).

The second assumption is generally accepted for vapour-dominated reservoirs. It
is also valid for high-permeability liquid-dominated reservoirs with high vertical heat
fluxes (McGuinness & Pestov 1996; McGuinness 1997).

The last two assumptions are satisfied in most practical situations except for two-
phase zones with vertical temperature gradients of the order of 100 K and with
bottom temperatures higher than 330 ◦C (Pestov 1997). The assumption of constant
liquid-phase density emphasizes the physical fact that the main driving mechanism in
two-phase flow is the difference between the phase densities.

The macroscopic conservation equations for the flow in a two-phase geothermal
reservoir are well presented in the geothermal literature (cf. Garg & Pritchett 1977;
Cheng 1978). With the above assumptions a non-dimensional form of these equations
is (Pestov 1997)

continuity equation

∂ (m̃ϕSv + Sl)

∂t̂
+ ∇̂ · (J v + J l) = 0, (2.1)

energy equation (two equivalent forms)

σδ̃ε

φ
ϕε−1 p

∂p̂

∂t̂
+ l̂
[
∂(m̃ϕSv)/∂t̂+ ∇̂ · (J v)

]
= 0, (2.2)

σδ̃ε

φ
ϕε−1 p

∂p̂

∂t̂
− l̂
[
∂Sl/∂t̂+ ∇̂ · (J l)

]
= 0. (2.3)

Here Sv,l are saturations, krv,l are relative permeabilities, ϕ = p/p̃ = pp̂ + 1, p is
pressure, p̂ is dimensionless pressure normalized by the vertical pressure difference p∗,

p = p∗/p̃ is the pressure jump, l̂ is non-dimensional latent heat normalized by its value
l∗ at ẑ = 0, φ is porosity, t̂ = t/t∗ is dimensionless time, and t∗ is a characteristic time
scale defined as the ratio of the vertical distance H to the characteristic velocity of
a liquid particle (Pestov 1997). All distances are normalized by H . Vectors J v and J l
can be interpreted as the dimensionless mass flux densities of the vapour and liquid
phase respectively. When Darcy’s law is assumed, the corresponding expressions are

J v = −krvϕ
µQ̃

(
γ∇̂p̂− m̃ϕez

)
, (2.4)

J l = − krl

m̃Q̃

(
γ∇̂p̂− ez

)
, (2.5)

where ez is a unit vector in the direction of gravity.
Two equivalent forms (2.2) and (2.3) are obtained by combining the energy equation

with the continuity equation.
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Equations (2.1)–(2.3) involve the following non-dimensional parameters (Pestov
1997): µ is the ratio of the dynamic viscosity of steam to that of water (taken as
constant), γ = p∗/ρ∗l gH is the ratio of the characteristic pressure difference to the
liquid-static pressure difference, σ is the heat capacity ratio of saturated rock to
that of water (taken as constant), δ̃ = CplT̃ /l

∗ and ε = c/l∗ are latent heat factors.

Parameter δ̃ involves the specific heat of water at constant pressure Cpl . Parameter ε
involves the constant c from the following state equation for the vapour phase:

p/ρv = c = const. (2.6)

Equation (2.6) emphasizes the empirical fact that in a two-phase flow the saturated
vapour density, ρv , varies with temperature (and, hence, with depth), whereas the ratio
between ρv and the saturation pressure remains constant. Equation (2.6) gives better
results than the ideal gas approximation for high temperatures and pressures, which
are often the case in practical applications, e.g. in a geothermal reservoir (Pestov
1994).

Another analytical approximation used in equations (2.1)–(2.3) is the power fit
obtained in our earlier work (Pestov 1994):

T

T̃
=

(
p

p̃

)ε
. (2.7)

The power fit (2.7) gives a better match to the Clausius–Clapeyron equation
compared to the other approximations in the temperature range of 200–300 ◦C typical
of two-phase reservoirs. According to the dimensional analysis results given in Pestov
(1997), only minor features of the flow are neglected in equations (2.1)–(2.3).

Equations (2.1)–(2.3) must be solved together with hydrodynamic and thermal
boundary conditions. We take both boundaries, ẑ = 0 and ẑ = 1, to be impermeable
and prescribe either constant temperatures at both boundaries (conducting–conducting
boundary condition), or a constant temperature at one boundary and a constant heat
flux at the other boundary (conducting–insulating boundary condition), or a constant
heat flux at both boundaries (insulating–insulating boundary condition). (Here we
follow the terminology pertaining to the Rayleigh–Bénard problem.) Since relative
permeabilities and saturations are functionally dependent (Bear & Bachmat 1991), we
take krl = ψ(Sl) and krv = 1−ψ(Sl), where ψ is some relative permeability function of
a general form. Then, with the help of (2.7), the whole problem can be reduced to two
dependent variables, e.g. saturation pressure and one of the relative permeabilities.

Decompose now the dependent variables into unperturbed (superscript zero) and
perturbed (superscript prime) quantities:

p(x, y, z, t) = p◦(z) + o p′(x, y, z, t),

krl(x, y, z, t) = k◦rl(z) + o k′(x, y, z, t) = ψ(S◦l + o S ′).

(Here and in the following ‘hats’ for non-dimensional quantities are dropped.)
Let us take the one-dimensional steady vapour-dominated solution (the lower

branch in figure 1) as the basic unperturbed state. Although a simplification of
reality, this solution describes the heat and mass transfer processes in many two-
phase geothermal reservoirs. For the range of parameters in which some two-phase
systems operate (e.g. the Geysers and Wairakei systems), this solution seems to be the
only one possible (McGuinness & Pestov 1996).

After substituting perturbed dependent variables into (2.1)–(2.3) and neglecting
second- and higher-order small quantities we obtain the following linearized equations:
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continuity equation

(1− m̃ϕ◦︸︷︷︸
O(m̃)

)
∂S ′

∂t
+ cl

(
1 +

cv

cl
ϕ◦︸ ︷︷ ︸

O(m̃Q̃)

)
∂k′

∂z
=

p

plsµQ̃
Φv +

p

plsm̃Q̃
Φl, (2.8)

energy equation (two equivalent forms)

− m̃ϕ◦ ∂S
′

∂t
+ cv ϕ

◦ ∂k
′

∂z
=

p

plsµQ̃
Φv[p

′], (2.9)

∂S ′

∂t
+ cl

∂k′

∂z
=

p

plsm̃Q̃
Φl[p

′], (2.10)

where

Φv[p
′] =

∂

∂z

[
k◦rv ϕ

◦
(
∂p′

∂z
+

1

ϕ◦
dϕ◦

dz
p′ − 2m̃pls p

′
)]

+k◦rvϕ
◦ ∇̃2 p′ − plsµQ̃

[
m̃ S◦v + ν (ϕ◦)ε−1

] ∂p′
∂t
, (2.11)

Φl[p
′] =

∂

∂z

(
k◦rl
∂p′

∂z

)
+ k◦rl ∇̃2p′ + plsm̃Q̃ν (ϕ◦)ε−1 ∂p

′

∂t
, (2.12)

cv =
q − m̃ϕ◦

µQ̃
, cl =

1− q
m̃Q̃

, (2.13)

∇̃2 =
∂2

∂x2
+

∂2

∂y2
, q =

p

pls

dp◦

dz
, ν =

σδ̃ε

φ
, pls =

ρ∗l gH

p̃
. (2.14)

Unless Q̃ ∼ Q̃cr , for the vapour-dominated basic state we have (Pestov 1996)

k◦rl ∼ m̃Q̃ � k◦rv ∼ 1⇒ k◦rv ∼
k◦rl

m̃Q̃
;

q ∼ m̃+ µQ̃ � 1⇒ cl ∼
1

m̃Q̃
� cvϕ

◦ ∼ 1;

q ≈ const⇒ ϕ◦ ≈ pz + 1;

k◦rv ≈ const, cl ≈ const, cvϕ
◦ ≈ 1.

Since m̃ and cv/cl are small compared to 1, the under-braced coefficients in (2.8)
can be neglected. Subtracting the resulting equation from equation (2.10) gives, as a
first approximation, Φv[p

′] = 0. Thus, unless Q̃ ∼ Q̃cr , the saturation disturbance and
its derivatives can be eliminated from equations (2.8)–(2.10) and a single second-order
equation for the pressure disturbance can be obtained for the vapour-dominated basic
state. After determining the pressure disturbance, the saturation disturbance can be
found from equation (2.10).

2.1. Pressure equation

The condition Φv[p
′] = 0 gives the following parabolic equation for the pressure

disturbance:
∂

∂ζ

(
ζ2 ∂p

′

∂ζ

)
+ ζ2 ∇̃2 p′ − ϑ (pζ)ε

∂p′

∂t
= 0, (2.15)
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where ϑ = plsµQ̃ν/(p)2k◦rv and ζ = z + 1/p is a new independent variable (ζ ∈ [ζ1, ζ2],
ζ1 = 1/p, ζ2 = 1/p+ 1).

We assume the solution of equation (2.15) to be of the form p′ = exp(−λt)f(x, y)P(ζ)
provided that

∂2f

∂x2
+
∂2f

∂y2
= −a2f,

where a is any real number. This equation is the reduced wave equation (Zauderer
1983), and its solution, f, can be resolved into sinusoidal components ei(χx+ξy) of x
and y. Then, a : a2 = χ2 + ξ2 can be interpreted as the horizontal wavenumber.

After separating variables, we can write the following equation for P:

L [P(ζ)] = − d

dζ

(
ζ2 dP

dζ

)
+ a2ζ2P = λϑ (pζ)εP. (2.16)

In the linearized form the thermal boundary conditions for P become

α1P(ζ) + β1Pζ(ζ) = 0 at ζ1 = 1/p,
α2P(ζ) + β2Pζ(ζ) = 0 at ζ2 = 1/p+ 1.

}
(2.17)

In (2.17) we set βi = 0, αi = 1 when constant temperature is imposed at the
boundary ζi, and βi = 1, αi = 0 when constant heat flux is imposed at ζi. Thus,
the conducting–conducting boundary condition will correspond to the following
combination: β1 = β2 = 0 and α1 = α2 = 1. Setting β1 = β2 = 1 and α1 = α2 = 0
will give the insulating–insulating boundary condition. The conducting–insulating
boundary condition will be obtained by setting β1 = 0, β2 = 1 and α1 = 1, α2 = 0 and
vice versa.

Note that equation (2.16) together with boundary conditions (2.17) is a regular
Sturm–Liouville problem. Indeed, ζ2 > 0, (pζ)ε > 0, a2ζ2 > 0, and these coefficients
and the derivative (ζ2)ζ are continuous in the closed interval [ζ1, ζ2]. The important
property of a regular Sturm–Liouville problem is that the eigenvalues are all real
and nonnegative, and they can be arranged in ascending order of magnitude as
follows: 0 6 λ1 < λ2 < . . . < λn < . . . (Zauderer 1983). Moreover, when a2 > 0,
λ = 0 cannot be an eigenvalue, and when a2 = 0 (the horizontal disturbances
of an infinite wavelength), λ = 0 is an eigenvalue if and only if α1 = α2 = 0
(insulating–insulating boundary condition) (Zauderer 1983). These results follow from
the self-adjointness and positivity of the differential operator L [P(ζ)]. Further we
shall construct the complete spectrum of the eigenvalues and the corresponding
real-valued eigenfunctions of the problem stated above.

Let us introduce the new dependent variable P (ζ) : P(ζ) = P (ζ)/ζ1/2. Then (2.16)
becomes

ζ2Pζζ + ζPζ +
[
λϑ (pζ)ε − a2ζ2 − 1

4

]
P = 0. (2.18)

We now show that λ = 0 is not an eigenvalue. Indeed, setting λ = 0 gives the general
solution of equation (2.18) represented by elementary functions ζ1/2 and ζ−1/2 when
a = 0 (linear horizontal disturbances), and by elementary functions sinh(aζ)/(aζ)1/2

and cosh(aζ)/(aζ)1/2 when a > 0 (general case). In the general case the boundary
conditions (2.17) force us to choose constants C1 = C2 = 0, which leads to P (ζ) ≡ 0.
In the case of linear horizontal disturbances, only the insulating–insulating boundary
condition gives a non-trivial solution. Thus, the complete spectrum of eigenvalues
includes λ = 0 if and only if the insulating–insulating boundary condition is imposed.
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2.1.1. Infinite horizontal wavelength

Setting a = 0 and introducing the new independent variable ζ̃2 = 4λϑ(pζ)ε/ε2

reduces equation (2.18), in the case of negative λ, to the modified Bessel’s equation.
The general solution of this equation is a linear combination of modified Bessel
functions of real order, which are monotonic (Watson 1952). Hence, there are only
trivial solutions satisfying the boundary conditions (2.17).

In the case of positive λ, equation (2.18) is Bessel’s equation, which has non-trivial
solutions (Watson 1952) satisfying the boundary conditions (2.17) (returning to the
old independent variable ζ):

Pn = C1J1/ε

[
2

ε
(λnϑ)1/2 (pζ)ε/2

]
+ C2Y1/ε

[
2

ε
(λnϑ)1/2 (pζ)ε/2

]
. (2.19)

For the conducting–conducting boundary condition the eigenvalue problem reduces
to finding roots of the cross-product

J1/ε(ζ̃)Y1/ε(bζ̃)− J1/ε(bζ̃)Y1/ε(ζ̃),

which has an infinite set of discrete positive roots r1 < r2 < . . . < rn < . . . (Abramowitz
& Stegun 1968). The latter yields the increasing sequence of positive eigenvalues

λn =
r2
nε

2n2π2

4ϑ
[(1 + p)ε/2 − 1]−2, (2.20)

where

rn =
rn(b− 1)

nπ
, b = (1 + p)ε/2

and rn = 1 + O(n−2) for large n.
For small ε formulas (2.19)–(2.20) become (neglecting ε2)

Pn = C1J1/ε

[
rnnπ

log(1 + p)

(
2

ε
+ log(pζ)

)]
+C2Y1/ε

[
rnnπ

log(1 + p)

(
2

ε
+ log(pζ)

)]
, (2.21)

λn =
r2
nn

2π2

ϑ log2(1 + p)
. (2.22)

The above results can easily be extended to include the constant-heat-flux boundary
condition. For the conducting–insulating thermal boundary condition the eigenvalue
problem reduces to finding roots of the cross-product

J1/ε(ζ1)Y
′

1/ε(ζ2)− J ′1/ε(ζ2)Y1/ε(ζ1).

For the insulating–insulating boundary condition we obtain the cross-product

J ′1/ε(ζ1)Y
′

1/ε(ζ2)− J ′1/ε(ζ2)Y
′

1/ε(ζ1).

Each cross-product has an infinite set of discrete positive roots (Abramowitz &
Stegun 1968) that will yield a countable increasing sequence of positive eigenvalues
λn.

2.1.2. Finite horizontal wavelength

Consider now the general case a 6= 0. Note that

(pζ)ε = 1 + ε log (pζ) + O(ε2) (2.23)

unless ε and | log (pζ) | are large, which is unlikely for vapour-dominated counterflow.
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Equation (2.18) becomes

ζ2Pζζ + ζPζ − (a2ζ2 + η2)P = −λϑε log (pζ)P , (2.24)

where η2 = 1/4− λϑ.
Assume the solution of equation (2.24) to be of the form

P = P (0) + εP (1) + . . . . (2.25)

Here P (0) is a solution of the modified Bessel’s equation

ζ2P
(0)
ζζ + ζP

(0)
ζ − (a2ζ2 + η2)P (0) = 0 (2.26)

with boundary conditions

P (0)(ζ1) = P (0)(ζ2) = 0, (2.27)

P (1) is a solution of the non-homogeneous equation

ζ2P
(1)
ζζ + ζP

(1)
ζ − (a2ζ2 + η2)P (1) = −λϑε log (pζ)P (0) (2.28)

with boundary conditions

P (1)(ζ1) = P (1)(ζ2) = 0 (2.29)

and so on. (For the sake of definiteness, we take the conducting–conducting boundary
condition.)

Note that the leading-order equation (2.26) is invariant with respect to wavenumber
a (e.g. use the rescaling ζ = aζ). However, the leading-order eigenvalue relationship
will include a because ζ1 = a/p in the boundary conditions (2.27). The higher-order
eigenvalue relationships will involve a because of the boundary conditions (2.29) and
because of the non-homogeneous term in (2.28). Putting λ 6 1/4ϑ, we have η2 > 0.
Then the general solution of the leading-order equation (2.26) is

P (0)(ζ) = C1Iη(aζ) + C2Kη(aζ),

where Iη and Kη are the modified Bessel functions, which are known to be monotonic
for any real η > 0 (Watson 1952). The boundary conditions (2.27) force us to choose
C1 = C2 = 0, which leads to P (0) ≡ 0. From equation (2.28) and boundary conditions
(2.29) we get P (1) ≡ 0. For all terms of the expansion (2.25) we will get the same
result. Thus, P ≡ 0 and λ 6 1/4ϑ is not an eigenvalue. A similar result is obtained
with the other choices of thermal boundary conditions.

Let λ > 1/4ϑ, then η2 < 0. Introduce η = (λϑ− 1/4)1/2. The modified Bessel func-
tions Iiη and Kiη (or I−iη) are two linearly independent solutions of the leading-order
equation (2.26). The real solution of (2.26) or the leading-order term of expansion
(2.25) can be constructed from the real and imaginary parts of Iiη and Kiη (or I−iη):

Pn = C1Φ(aζ) + C2Ψ (aζ), (2.30)

where

Φ(aζ) =

∞∑
k=0

(aζ/2)2k

k!mk
cos(η log( 1

2
aζ)− γk), (2.31)

Ψ (aζ) =

∞∑
k=0

(aζ/2)2k

k!mk
sin(η log( 1

2
aζ)− γk). (2.32)

Here mk and γk denote the modulus and argument of the gamma function Γ (k+1+iη)
respectively. Note that functions Φ and Ψ are analytic (see Appendix B).
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Q̃ λ1 λ2

0.01 661 2473
0.05 135 503
0.10 69 257
0.50 16 60
1.00 10 36

Table 1. The first two eigenvalues λ1 and λ2 for different Q̃.

When the conducting–conducting boundary condition is imposed, constants C1 and
C2 are both non-zero if and only if the cross-product

Φ(aζ1)Ψ (aζ2)− Φ(aζ2)Ψ (aζ1) (2.33)

equals zero. This yields the following eigenvalue relationship:

tan(η log(ζ2/ζ1)) =
f(aζ1)g(aζ2)− f(aζ2)g(aζ1)

f(aζ1)f(aζ2) + g(aζ1)g(aζ2)
. (2.34)

Here f(aζ) and g(aζ) are the real and imaginary parts of the complex-valued function

∞∑
k=0

(aζ/2)2k

k!Γ (k + 1 + iη)

respectively.
There is an infinite number of positive roots r1 < r2 < . . . < rn < . . . of the

transcendental equation (2.34) (see the graphical solutions in Appendix B), which
yield the increasing sequence of positive eigenvalues

λn =
1

ϑ

[
r2
nn

2π2

log2(1 + p)
+

1

4

]
, (2.35)

where

rn =
rn log(1 + p)

nπ
.

Since the right-hand side of (2.34) goes asymptotically to zero when η increases
(see Appendix B), we can take rn log(ζ2/ζ1) = nπ and rn ∼ 1 for large n. Then (2.35)
becomes

λn ∼
1

ϑ

[
n2π2

log2(1 + p)
+

1

4

]
as n→∞. (2.36)

As can be seen from (2.35) and (2.36), λn decreases when Q̃ increases.
The first two eigenvalues λ1 and λ2 calculated for m̃ = 0.02, liquid-static pressure

jump pls = 2.4, φ = 0.03, a = 1 and for different values of Q̃ are given in table 1. The
corresponding eigenfunctions for the first two modes at Q̃ = 0.05 are shown in figure 3.

The eigenfunctions Pn given by (2.19) (or (2.21)) and (2.30) generate a complete set
of normal modes pn of the form

pn(x, y, ζ, t) =
Pn(ζ)

ζ1/2
e−λnt ei(χx+ξy) (ξ2 + ς2 = a2). (2.37)

Since all eigenvalues (2.20) (or (2.22)) and (2.35) are positive, each normal mode (2.37)
is stable. Hence, the pressure field is asymptotically stable.
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Figure 3. The eigenfunctions P1 and P2 for the first two modes; Q̃ = 0.05

The above results admit a straightforward extension to include the other choices
of thermal boundary conditions. For the conducting–insulating boundary condition
all eigenvalues are also positive and λ = 0 is not an eigenvalue. Thus, this case is
stable. For the insulating–insulating boundary condition the complete spectrum of
eigenvalues includes λ = 0 and all other eigenvalues are positive. Hence, this case is
neutrally stable. The proof is identical to that given above. The eigenvalues can be
computed from the zeros of cross-products of the type (2.33) with functions Φ and Ψ
replaced by their derivatives at the point corresponding to the insulating boundary.

2.2. Saturation equation

If the pressure disturbance is known, then the saturation disturbance can be found
from equation (2.10). Eliminating the Laplacian, we obtain the following linear first-
order partial differential equation for k′:

∂k′

∂t
+ C

∂k′

∂ζ
=

[
α1

(pζ)ε

ζ2
+ α2

(pζ)ε

ζ

]
∂p′

∂t
− α3

1

ζ

∂p′

∂ζ
, (2.38)

where

α1 =
ψ̇pk◦rlϑ

plsm̃Q̃
, α2 = ψ̇ν, α3 =

2ψ̇pk◦rl
plsm̃Q̃

, ψ̇ =

(
dkrl

dSl

)◦
, C = ψ̇

1− q
m̃Q̃

. (2.39)

Since equation (2.38) is linear and since p′ is resolved into normal modes pn of
the form (2.37), we can decompose k′ into corresponding modes kn = Kn(ζ, t) ei(χx+ξy)

and solve equation (2.38) separately for each kn (kn are linearly independent due to
pn being linearly independent). To do so, we change independent variables by setting
dζ/dt = C . This gives the family of characteristics, all of which are straight lines of
slope 1/C since C is constant, i.e. ζ = Ct+ r (ζ1 6 r 6 ζ2, ζ1 = 1/p, ζ2 = 1/p+ 1).

Equation (2.38) can be immediately integrated along characteristics and the solution
is

Kn(r, t) =
α3

C

[
Pn(r)

r
− Pn(r + Ct)

r + Ct

]
−
(
α2 +

α3

C

) λn
C

e(λn/C)rI1(r, t)

−
(
α1 +

α3

λn

)
λn

C
e(λn/C)rI2(r, t) +Kn(r, 0), (2.40)
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where Kn(r, 0) is the initial disturbance of the saturation field at point r ∈ [ ζ1, ζ2 ] and

I1(r, t) =

∫ r+Ct

r

Pn(s)
e−(λn/C)s

s
ds, I2(r, t) =

∫ r+Ct

r

Pn(s)
e−(λn/C)s

s2
ds. (2.41)

In (2.40)–(2.41) expansion (2.23) is used.
Each solution (2.40) must satisfy hydrodynamic boundary conditions written in

linearized form. If both boundaries are impermeable, then Kn(r, t) = 0 at ζ = ζ1, ζ2

for any t. We can satisfy one boundary condition, namely that at ζ1, by setting
Kn(ζ1, 0) = 0. However, it is not possible to satisfy both boundary conditions for any
t > 0. The standard way out of this problem is to introduce a saturation shock at ζ2,
which will be shown to be infinitesimal.

Each solution Kn(r, t) of the form (2.40) can be seen as a travelling wave, which
originates at some horizontal level r and moves downward with speed C . No break-
down of the solutions (2.40) is possible, since all waves Kn(r, t) move at the same
speed in the same direction. The development of the disturbance k′ in time is fully
represented by travelling waves Kn(r, t). If we set the initial pressure disturbance to
be zero, then, according to (2.40), the initial small disturbance of the saturation field
k′(r, 0), represented by Kn(r, 0), will be transmitted along characteristics with speed C
without any change in shape and size. If the porous medium is bounded in depth and
C 6= 0, then the initial disturbance will reach the lower boundary in time (ζ2 − r)/C .
A non-zero small disturbance of the pressure field excites amplified unidirectional
waves in the saturation field. Again, in a bounded porous medium the ‘lifetime’ of
these amplified disturbances does not exceed 1/C , because the wave originated at the
furthermost point ζ1 reaches the lower boundary in this time. 1/C is also the time
during which the growth in amplitude of the saturation waves occurs. It is important
to know how much this growth is. In what follows, we show that the total amplifi-
cation of the saturation waves is bounded by a multiple of the absolute maximum
value of the initial pressure disturbance.

The nth component of the total amplification of the saturation wave k′(r, t), origi-
nated at some point r ∈ [ζ1, ζ2], over a distance ζ2 − r is given by

An(r) = Kn(r, (ζ2 − r)/C)−Kn(r, 0).

Using the Mean Value Theorem for evaluating the integrals I1 and I2, we have

An(r) =
α3

C

[
Pn(r)

r
− Pn(ζ2)e

−(λn/C)(ζ2−r)

ζ2

]
−Pn(ζ

])N1 −Pn(ζ
[)N2, (2.42)

where

N1(λn) =
(
α2 +

α3

C

) λn
C

e(λn/C)r

[
E1

(
λn

C
r

)
− E1

(
λn

C
ζ2

)]
, (2.43)

N2(λn) =
λn

C

(
α1 +

α3

λn

){
1

r
− e−(λn/C)(ζ2−r)

ζ2

− λn

C
e(λn/C)r

[
E1

(
λn

C
r

)
− E1

(
λn

C
ζ2

)]}
(2.44)

and ζ], ζ[ ∈ (r, ζ2).
In (2.43) and (2.44) E1 is the exponential integral, i.e.

E1(ζ) =

∫ ∞
ζ

e−s

s
ds.

Note that sequences {N1(λn)} and {N2(λn)} are bounded above for every fixed r.
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Indeed, for λ = 0 we have

lim
λ→0

[
λ

C
E1

(
λ

C
ζ

)]
= 0

and, hence,

N1(0) = 0, N2(0) =
α3

C

(
1

r
− 1

ζ2

)
< ∞.

For λn →∞ (high eigenvalues) we have

N1(λn) ∼
(
α2 +

α3

C

) 1

r
+ O

(
1

λn

)
, N2(λn) ∼ α1

1

r2
+ O

(
1

λn

)
. (2.45)

In expressions (2.45) the following asymptotic expansion for the exponential integral
is used (Abramowitz & Stegun 1968):

λ

C
E1

(
λ

C
ζ

)
∼ e−(λ/C)ζ

ζ

{
1− C

λζ
+ 1× 2

(
C

λζ

)2

− 1× 2× 3

(
C

λζ

)3

+ . . .

}
.

Therefore for every fixed r ∈ [ζ1, ζ2] there exist finite numbers N∗
1 and N∗

2,
not depending on n, such that N1,2(λn) 6 N∗

1,2 for all λn. Recalling that the total

amplificationA(r) =
∑∞

n=1 cnAn(r) ei(χx+ξy), where cn are the coefficients in the normal
mode expansion of p′, we can write

|A(r)| 6 P∗Nr, (2.46)

where

Nr =
α3

C

1

r
+N∗

1 +N∗
2

and

P∗ = max
ζ∈[ζ1 ,ζ2]

{|p′(ζ, 0)|}.

According to (2.46), the total amplification of the saturation wave k′ does not
exceed the absolute maximum value of the initial pressure disturbance multiplied
by the finite number Nr . This also means that it is possible to make the total
amplification of k′ to be as small as we wish. In other words, k′ remains small for all
times provided the initial pressure disturbance is small. Thus, the saturation field is
stable. (Here we talk about stability in the sense of Lyapunov as defined in Drazin &
Reid 1981.)

Setting r = ζ1 and assuming the conducting–conducting boundary condition at
ζ = ζ1 and ζ = ζ2, we have

Nζ1
=
(
α2 +

α3

C

)
p+ α1 p. (2.47)

As follows from (2.47), Nζ1
is small, since p is small in a vapour-dominated

flow. Note that the absolute value of the total amplification of the saturation wave
originated at the upper boundary, |A(ζ1)|, gives the magnitude of the saturation
shock at ζ2, which is infinitesimal according to (2.46). The bounding numberNζ1

and
wave speed C , calculated for linear relative permeabilities (ψ̇ = 1) and for Grant’s
curves (ψ̇ 6= 1) (Grant, Donaldson & Bixley 1982), are given in table 2. Here we
take m̃ = 0.02, pls = 2.4, φ = 0.03, residual saturations Srl = 0.25 and Srv = 0.05.
Values of C andNζ1

are calculated using the exact steady-state solutions. According
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Figure 4. The saturation disturbance after 0.501× 108 s.

Q̃ C (̇ψ=1) Nζ1 (̇ψ=1) C (̇ψ 6=1) Nζ1 (̇ψ 6=1)

0.01 4890 0.2 47.7 0.0019
0.05 970 0.3 31.6 0.0085
0.10 480 0.4 26.3 0.0193
0.50 88 1.1 16.1 0.2100
1.00 38 2.4 12.4 0.7299
1.50 22 4.3 11.9 2.4000
2.00 13 7.1 11.0 5.7010
2.50 8 12.6 9.7 14.7558

Table 2. C and Nζ1 for different Q̃.

to our calculations, C is large compared to 1 for Q̃ � Q̃cr , and it is decreasing
when Q̃ is increasing. This can be seen from the analytical expression (2.39) too. The
bounding numberNζ1

is increasing when Q̃ is increasing, and it is relatively large for

Q̃ ∼ Q̃cr .
Let us define the relaxation time τ as equal to 1/|C|. Then, for the states with
Q̃ <
∼ 1, relaxation time τ is small compared to 1. (Returning to dimensional quantities,

the relaxation time is much less than the characteristic time t∗.) Time τ is increasing
when Q̃ is increasing (see table 2). According to our calculations, the states with
Q̃ ∼ Q̃cr (sub-critical states) equilibrate to the initial unperturbed state relatively
slowly, and the saturation field remains perturbed during relatively long periods
of time. Moreover, the saturation disturbance may grow one order of magnitude
larger than the initial pressure disturbance since Nζ1

∼ 10 for sub-critical states (see
table 2).

To verify the above analytical results we performed computer simulations using the
numerical program TOUGH2 (Pruess 1986). The initial unperturbed state was set
to be one-dimensional vapour-dominated counterflow. A constant temperature and
constant heat flux were imposed at the upper and lower boundary respectively. In
all simulations, the upper layers of the vapour-dominated region equilibrated first.
As expected, the saturation field exhibited high sensitivity to small disturbances of
pressure. There was a strong indication that the wave speed of the saturation distur-
bances decreases when Q̃ increases. To illustrate this, figure 4 shows the saturation
disturbance S ′v after 0.501 × 108 s for three values of Q. The reservoir permeability
was taken to be 10−14 m2. Other parameters used in figure 4 were chosen to be
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representative of the Geysers geothermal field (Lai et al. 1994). Pressure was slightly
perturbed at t = 0 near the top of the reservoir (−18 m in figure 4).

3. Conclusions
The purpose of this theoretical investigation was to explain the development of

two-layer structures within homogeneous geothermal reservoirs. The presence of
two superposed layers, saturated by water and steam in different proportions, was
inferred from measurements in the Wairakei, Geysers and Larderello geothermal fields.
There was no drilling evidence of any permeability contrasts and low permeability
barriers between the two layers. As we conjectured earlier (Pestov 1995), these two-
layer structures may result from time changes in the vertical heat flow, reservoir
permeability, and the total mass of water in the system.

In this paper we introduce the quasi-static approximation for geothermal processes
and examine the stability of vapour-dominated counterflow looking at the develop-
ment in time of both pressure and saturation disturbances. For the vapour-dominated
case the system of linearized governing equations can be decoupled and a separate
parabolic equation for the pressure disturbance can be obtained. After determining
the pressure disturbance, the saturation disturbance can be found from the remaining
travelling wave equation.

We treat the pressure and saturation equations by the method of normal modes
and the method of characteristics respectively. The pressure field is shown to be
asymptotically stable for all choices of thermal boundary conditions excluding the
insulating–insulating boundary condition for which it is neutrally stable. According
to our results, the pressure field is not sensitive to small disturbances of the sat-
uration field, whereas the saturation field is highly sensitive to small disturbances
of pressure. Small disturbances of pressure excite unidirectional amplified waves in
the saturation field which propagate with the same constant speed. When the initial
pressure disturbance is set to be zero, an initial small disturbance of the saturation
field is transmitted towards the lower boundary without any change in shape. The
saturation field is proven to be stable in the sense of Lyapunov, that is, the saturation
disturbance remains bounded by an infinitesimal number for all times.

We define the relaxation time to restore equilibrium as τ = 1/|C|, where C is
the wave speed of the saturation disturbances. The absolute value of C determines
the ‘lifetime’ of the amplified saturation waves: in time 1/|C| all saturation waves
leave the flow region. The sign of C determines the direction of propagation of
the saturation waves. In vapour-dominated counterflow, the wave speed is positive
and hence the saturation waves propagate towards the lower boundary. In liquid-
dominated counterflow, the wave speed is negative and the saturation waves propagate
upward to the upper boundary. The signs of the wave speed derived from the linearized
saturation equations are the same as those deduced from numerical experimenting
with nonlinear equations by Kissling et al. (1992). The direction of propagation of
small saturation waves specifies the location of a two-phase zone within a system and
explains why the inverse structures IA, IB, IC, and ID are not realized in nature.

In the case of vapour-dominated counterflow, the relaxation time calculated from
the linearized saturation equation is short compared to the characteristic time when
Q̃ <

∼ 1. The relaxation time increases when Q̃ increases. For Q̃ ∼ Q̃cr (sub-critical
states) the saturation field remains perturbed during longer periods of time and the
saturation disturbances may grow one order of magnitude larger than the initial
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pressure disturbance. This may indicate that the sub-critical states are becoming
transient (Zemansky 1957; Callen 1985).

Given the direction of propagation of saturation disturbances, we conclude that
the upper layers of a vapour-dominated zone equilibrate earlier than its lower layers.
Hence, the vapour-dominated zone always adhers to the upper boundary of a porous
medium provided it was there at previous times.

Let us assume that at t = 0 a porous medium is fully two-phase and vapour-
dominated, and Q̃ is much less than 1. According to our results, the relaxation time is
short compared to the characteristic time until Q̃ <

∼ 1. Then the two-layer structures
of types A, B and C can be connected to this initial state by a quasi-static path.
Since the initial state is a steady state, structures A, B and C are also steady states
(Zemansky 1957; Callen 1985). We may conclude that structures A, B and C can
develop during the evolution of a vapour-dominated geothermal system. On the other
hand, there is no quasi-static path between any vapour-dominated steady state (e.g. a
fully two-phase vapour-dominated steady state and steady states of types A, B and C)
and the inverse two-layer structures I A, I B and I C. Therefore inverse structures I A,
I B and I C cannot develop during the evolution of a vapour-dominated geothermal
system.

It is also unlikely that structures I A, I B and I C can develop from a fully two-phase
liquid-dominated initial state. Let us assume that the initial state of a system is fully
two-phase and liquid-dominated, the final state is either I C or I A, and the transition
is quasi-static. According to the results of Appendix C, it is theoretically possible that
a structure with a water layer over a liquid-dominated counterflowing zone, model
D, develops from a fully two-phase liquid-dominated steady state when Q̃ increases.
(Given the direction of propagation of saturation disturbances, the inverse structure
ID is impossible – see Appendix C.) Then a further increase in Q̃ would lead to the
formation of I C or I A if the system could pass through the critical point Q̃cr (see
figure 1). Such a quasi-static transition, however, is impossible. There is an indication
coming from our analytical results presented here and supported by our earlier
numerical investigations (Pestov 1995), that the sub-critical states are not steady. This
also agrees with the numerical investigations of nonlinear equations by Weir & Young
(1991). According to their results, it is not possible for a liquid-dominated zone to
switch to vapour-dominated conditions by passing the critical point for the heat flux
value, since the wave speed becomes zero there and hence the relaxation time grows
infinitely large.

We may conclude that there are no quasi-static paths between the fully two-phase
liquid-dominated state and the inverse two-layer structures I A, I B and I C. We also
may conclude that I A, I B and I C cannot develop from a fully two-phase liquid-
dominated initial state either. The latter explains why structures similar to I A, I B
and I C have never been found in nature.

It is, however, possible to transform steady states A, C and a fully two-phase
vapour-dominated steady state into a fully two-phase liquid-dominated state by
changing the total amount of water and holding the dimensionless heat flux fixed.
Using the model of the quasi-permeable boundary introduced in Pestov (1996), one
can construct a quasi-static path to a fully two-phase liquid-dominated steady state.
(It is possible to find values of Q̃ for which liquid-dominated counterflow is stable,
as shown numerically in Pestov 1995.) Such a quasi-static path will represent some
injection/withdrawal process.

Structures A, B and C were obtained numerically from a fully two-phase vapour-
dominated steady state in Pestov (1995).
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The present results do not apply to regions with lateral flows and large mass
recharges.

This research was supported by a Victoria University of Wellington Postgraduate
Scholarship for PhD study, which is gratefully acknowledged. I thank my supervisors
Mark McGuinness and Graham Weir for continued help. I am indebted to Phil
Broadbridge, Robert McKibbin, Don Nield, Boris Pavlov, Vladimir Pestov, and to
the referees of this paper for useful comments.

Appendix A. Quasi-static process
A quasi-static process is a series of simultaneous transitions from one equilibrium

state to the neighbouring equilibrium state caused by an infinitesimal unbalanced
force. During each transition parameters of the system change by an infinitesimal
amount. However, changes over sufficiently long periods of time may be finite.

Suppose that some parameter of the system k changes over a period of time tn− t0,
which is long compared to the characteristic time of the system t∗, i.e. tn − t0 � t∗.
We say that process k(t) is slow if the variation of k over any time interval I ⊆ [t0, tn]
of length t∗ is small compared to the minimum value of k on the same interval I:

ω(k, I) = max
t∈I

k(t)−min
t∈I

k(t)� min
t∈I

k(t).

Note that the variation of k over the whole interval [t0, tn], ω(k, [t0, tn]), can be large.
In a particular case where process k(t) is smooth (k(t) is a differentiable function), this
is equivalent to the following condition on the derivative dk/dt at any t, t0 6 t 6 tn:

dk(t)

dt
� min

t∈I
k(t)

1

t∗
,

where I is the interval of length t∗ centred at t.
When process k(t) is slow, it is possible to find a partition, Π = {t0, t1, . . . , tn−1, tn},

of the interval [t0, tn], such that the mesh, meshΠ = minn−1
i=0 {ti+1 − ti}, of Π is

greater than or similar to t∗ and the variation of k on each interval Ii = [ti+1, ti],
ω(k, Ii) = maxt∈Ii k(t)− mint∈Ii k(t), is much less than mint∈Ii k(t), that is

n−1

min
i=0
{ti+1 − ti} & t∗, (A 1)

max
t∈Ii

k(t)−min
t∈Ii

k(t)� min
t∈Ii

k(t). (A 2)

Now the original slow process k(t) is approximated by a quasi-static path, every
i-step of which can be described in the following manner. Assume that at t < ti
the system is at the state of thermodynamic equilibrium. At time t = ti, called here
the event time, we change parameter k instantly by a small amount and wait until
the system equilibrates to a new equilibrium state. The time, τ, during which an
equilibrium state can be restored, is called the relaxation time of the system. If for
any i (i = 0, ..., n − 1) we have τ � ti+1 − ti, then process k(t) can be replaced by
a series of instantaneous transitions between neighbouring equilibrium states, and
for any t ∈ Ii, i = 0, ..., n − 1 the steady-state conditions can be applied. In other
words, the final state of the system, S(tn), is accessible from the initial sate, S(t0),
by the quasi-static path. If for some icr : 0 < icr < n the relaxation time τ becomes
comparable with ti+1 − ti and if it is not possible to dissect the interval [t0, tn] further
satisfying conditions (A 1) and (A 2), then the state of the system cannot be described
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in terms of spatial coordinates only and must involve time. The steady state conditions
are not applicable anymore, and the system passes through non-equilibrium states.
In other words, the state S(tn) is not accessible from the steady-state S(t0) by the
quasi-static path. If there is no other quasi-static path between S(tn) and S(t0), then
S(tn) is not an equilibrium state (Zemansky 1957; Callen 1985).

Appendix B. Functions of the Φ and Ψ families
Since the modified Bessel function I−iη is the complex conjugate of Iiη , the real-

valued solution of (2.26) can be constructed from the real and imaginary parts of Iiη ,
i.e.

Φ = Re
(
Iiη
)
, Ψ = Im

(
Iiη
)

or in the form of series

Φ(ζ) =

∞∑
k=0

( 1
2
ζ)2k

k!mk
cos(η log 1

2
ζ − γk),

Ψ (ζ) =

∞∑
k=0

( 1
2
ζ)2k

k!mk
sin(η log 1

2
ζ − γk),

where mk and γk are the modulus and argument of the gamma function Γ (k+ 1 + iη)
respectively. (Here we take a = 1.)

We shall show that functions Φ and Ψ are analytic in the right half-plane Re(ζ) > 0,
and, as a corollary, they are real analytic functions in the positive half-axis ζ > 0.
Since every term of the series Φ and Ψ is an analytic function in Re(ζ) > 0 being a
composition of analytic functions, it is sufficient to show that both series converge
uniformly on every compact subset of Re(ζ) > 0.

Let D be a compact subset of Re(ζ) > 0. Without loss in generality for some
real a, b, c, where 0 < a < b and c > 0, D is contained in the region determined by
inequalities

a 6 Re(ζ) 6 b, −c 6 Im(ζ) 6 c.

In particular, for any ζ ∈ D, as follows from formula (4.1.2) of Abramowitz &
Stegun (1968),

|ζ| 6 (c2 + b2)1/2, | ln ζ/2| = | ln |ζ/2|+ iθζ | 6 | ln((c2 + b2)1/2/2)|+ π,

where θζ is the argument of ζ, −π < θζ < π.
Therefore, if ζ ∈ D, then

| cos(η log 1
2
ζ − γk)| = | cos(η log 1

2
ζ) cos γk + sin(η log 1

2
ζ) sin γk|

6 | cos(η log 1
2
ζ)| | cos γk|+ | sin(η log 1

2
ζ)| | sin γk|

6 | cos(η log 1
2
ζ)|+ | sin(η log 1

2
ζ)|

6 | cos(ηRe[log 1
2
ζ])|| cosh(η Im[log 1

2
ζ])|

+| sin(ηRe[log 1
2
ζ])|| sinh(η Im[log 1

2
ζ])|

+| sin(ηRe[log 1
2
ζ])|| cosh(ηIm[log 1

2
ζ])|

+| cos(ηRe[log 1
2
ζ])|| sinh(η Im[log 1

2
ζ])|

6 2 exp(η Im[log 1
2
ζ]) 6 2 exp(η| log 1

2
ζ|)

6 2eη exp[| log 1
2
(c2 + b2)1/2|+ π].
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Figure 5. The functions of the Φ and Ψ families at Q̃ = 0.1.

Here formulas (4.3.17), (4.3.55) and (4.3.56) of Abramowitz & Stegun (1968) are
used.

As a corollary, for every k > 1 and ζ ∈ D we have∣∣∣∣∣ ( 1
2
ζ)2k

k!mk
cos(η log 1

2
ζ − γk)

∣∣∣∣∣ 6 (b2 + c2)k

4kk!mk
2 eη exp[| log 1

2
(c2 + b2)1/2|+ π],

and since mk →∞ as k →∞, we further have∣∣∣∣ (ζ/2)2k

k!mk
cos(η log 1

2
ζ − γk)

∣∣∣∣ 6 Ck
1

k!
C2,

where C1, C2 are positive constants. Note that series
∑

Ck
1/k! is convergent. Hence,

Φ is uniformly convergent in the region D. Therefore we conclude from Weierstrass’s
theorem that Φ is analytic. A similar argument works for Ψ .

Functions Φ and Ψ behave as periodic functions in the interval [ζ1, ζ1 + 1] for
ζ1 = 1/p, representative of geothermal reservoirs. This means that it is possible to
satisfy the thermal boundary conditions for the pressure disturbance at both ends by
stretching these functions in an appropriate way.

However, when ζ →∞ functions Φ and Ψ are amplified exponentially. Indeed, for
all natural k we have (formula (6.1.16) of Abramowitz & Stegun 1968)

mk > k! |Γ (1 + iη)| = k!m◦.

Therefore, if ζ is real positive,

|Φ(ζ)| 6
∞∑
k=0

∣∣∣∣∣ 1
2
ζ2k

k!mk
cos(η ln 1

2
ζ − γk)

∣∣∣∣∣ 6 1

m◦

∞∑
k=0

ζ2k

22k(k!)2

6
1

m◦

∞∑
k=0

ζ2k

(2× 4× · · · × 2k)2
6

1

m◦

∞∑
k=0

ζ2k

(2k)!
6

cosh ζ

m◦
.

Thus for large ζ

Φ .
1

|Γ (1 + iη)| cosh(ζ), and similarly, Ψ .
1

|Γ (1 + iη)| cosh(ζ).

Figure 5 shows the functions of the Φ and Ψ families for the first mode at Q̃ = 0.1.
Function Φ is represented by a line and function Ψ is represented by points; both
are normalized by their values at ζ2. In figure 5 we take m̃ = 0.02, pls = 2.4 and
φ = 0.03
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Figure 6. A graphical solution of equation (2.34) at Q̃ = 0.1.

After writing the cross-product of Φ and Ψ in the form (2.34), its zeros can be
easily calculated, e.g. with the help of the Maple system. The graphical solution for
Q̃ = 0.1 is presented in figure 6 (a = 1 in both cases). The left-hand side of (2.34)
is represented by points, and the right-hand side of (2.34) is represented by a line.
The plotted solution demonstrates that the right-hand side goes asymptotically to
zero when η increases, and that there is an infinite number of positive zeros of the
cross-product (2.33).

Appendix C. On the stability of liquid-dominated counterflow
For the liquid-dominated basic state it is not possible to obtain a separate equation

for the pressure disturbance. In regard to the stability question, we rely on numerous
computer experiments that simulated a stable liquid-dominated counterflow in a range
of parameters typical of two-phase reservoirs (see, for example, Lai et al. 1994; Pestov
1995, 1997). A stable liquid-dominated counterflow was also obtained in laboratory
experiments by Bau & Torrance (1982).

Here we determine the direction of propagation of small saturation disturbances
in the liquid-dominated medium. In this case the simplified equations (2.8)–(2.10) can
be also used when Q̃ � κ̃. Here κ̃ is the lower bound for the existence of liquid-
dominated counterflow (McGuinness & Pestov 1996). Now coefficients in (2.8)–(2.10)
must be calculated from the liquid-dominated steady solution. For this solution we
have (Pestov 1996)

k◦rv =
µQ̃

ϕ◦(1− m̃ϕ◦) ∼ µQ̃ � k◦rl ∼ 1⇒ ψ̇ ∼ 1, k◦rl ∼ k◦rv/µQ̃;

q = 1− m̃Q̃ ⇒ cv ∼ 1/µQ̃ � cl = 1.

Note that k◦rl , ψ̇, q, cl and cv vary with z only slightly and ϕ◦ can be taken as a linear

function of z when Q̃ is small compared to Q̃cr .
For the sake of simplicity, we restrict our consideration to Q̃ � κ̃ and Q̃ � Q̃cr . In

practice it is possible to satisfy both of these inequalities. For instance, if k = 10−13 m2,
then κ̃ ∼ 10−3 and Q̃cr = 2.8 (Pestov 1996), and there is a non-zero interval of
Q̃ : 10−3 � Q̃ � 1.
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Eliminating the Laplacian from (2.8)–(2.10), we have

m̃

ψ̇

(
1 +

Q̃
k◦rl

k◦rv

µQ̃

)
ϕ◦
∂k′rv
∂t
− cv

(
1− cl

cv

m̃Q̃
k◦rl

k◦rv

µQ̃︸ ︷︷ ︸
O(m̃µQ̃2)

)
ϕ◦
∂k′rv
∂z
− cv

dϕ◦

dz
k′rv = Φ1[p

′],

where

Φ1[p
′] =

p

pls

(
Φv

µQ̃
− 1

k◦rl

k◦rv

µQ̃
ϕ◦Φl

)
is the first-order linear differential operator. On noting that the under-braced coeffi-
cient is small compared to 1, the above equation can be rewritten in the form

∂ρ′

∂t
+ C

∂ρ′

∂z
=
ψ̇

m̃

1

1 + k◦rv/k
◦
rlµ

Φ1[p
′], (C 1)

where ρ′ = ϕ◦k′rv and

C = − ψ̇
m̃

q − m̃ϕ◦

µQ̃+ Q̃k◦rv/k◦rl
. (C 2)

Note that C in (C 2) is negative. Kissling et al. (1992) and Young (1996) also obtained
a negative saturation wave speed for the liquid-dominated solution. An important
corollary of this result is that small saturation disturbances propagate upward from
the bottom to the top of a reservoir. Assuming that the pressure field is stable, we
may conclude that the lower layers of a liquid-dominated zone equilibrate earlier than
the upper layers. We may also conclude that there is a quasi-static path between the
fully two-phase liquid-dominated steady state and structure D, and that structure D
is a steady state. Given the direction of propagation of saturation disturbances, the
inverse structure ID is impossible.
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